Tuesday, August 8, 2017

Loop quantum gravity with homogeneously curved vacuum

Tuesday, Apr 18th
Bianca Dittrich, Perimeter Institute
Title: (3+1) LQG with homogeneously curved vacuum 
PDF of the talk (8M)
Audio+Slides [.mp4 17MB]

by Jorge Pullin, Louisiana State

The way geometries are studied mathematically one starts with a set of points that has a notion of proximity. One can say when points are close to each other. This is not the same as being able to measure distances in the set. That requires the introduction of an additional mathematical structure, a metric. The sets of points with notion of proximity are known as “manifolds”. General relativity is formulated on a manifold and is a theory about a metric to be imposed on that manifold. Ordinary quantum field theories, like quantum electrodynamics, require the introduction of a metric before they can be formulated, so they are of different nature than general relativity. Theories that do not require a metric in order to be formulated are known as “background independent”. Interestingly, although general relativity is a theory about a metric, it can be formulated without any prior metric. There exist quantum field theories that can be formulated without a metric. They are known as topological field theories and they typically, contrary to ordinary field theories, have only a finite number of degrees of freedom. This means that they are much easier to treat and to quantize.

An example of a topological field theory is general relativity in three space-time dimensions. In one dimension less than four, the Einstein equations just say that the metric is flat, except at a finite number of points. So space-time is flat everywhere with curvature concentrated at just a few points. An example of a space that is flat everywhere except at a point is a cone. The only place that is curved is the tip. One has to remember that the notion of curvature we are talking here is one that can be measured from inside the space-time (typically by going around a circle and seeing if a vector carried around returns parallel to itself). If you do that in a cone on any circle that does not thread the tip, the vector comes back parallel to itself. So space-times in three dimensional general relativity are said to have “conical singularities” at the points where the curvature is non-zero. As other topological field theories, general relativity in three space-time dimensions has a finite number of degrees of freedom. This explains why Witten was able to complete its quantization in the mid 1980’s whereas the quantization of four dimensional general relativity is still a big outstanding problem today.

In this talk a generalization of three dimensional general relativity to four dimensions was presented. The resulting theory in four space-time dimensions has curvature concentrated at edges (strings) –as opposed to points as we had in the three dimensional case- and elsewhere the metric is flat. This makes them much easier to quantize than general relativity. Among the results was the construction of four dimensional quantum geometries similar to those in a previous model by Crane and Yetter. Also a role for quantum groups, that had been conjectured to arise when one considers a cosmological constant was found providing more evidence to this assertion. The space of quantum states (Hilbert space) was rigorously constructed and leads to insights about how the continuum limit of the theory could emerge. The hope is that one could build on these theories to construct new representations for loop quantum gravity in four space-time dimensions and hopefully to implement on them the (quantum) dynamics of general relativity.

Also a notion of duality emerges. In this context, duality means a certain relationship between the metric and the curvature of the space-time at a classical level. Here it can be implemented at a quantum level and quantum space of states associated with the metric (areas) and curvatures can be introduced and are dual to each other. Similar spaces had been proposed for general relativity, but here there is much more mathematical control over them, so this provides a controlled arena to test ideas that are being put forward in the context of loop quantum gravity in four space-time dimensions.

Friday, April 28, 2017

Transition times through the black hole bounce

Tuesday, Apr 4th
Parampreet Singh, LSU
Title: Transition times through the black hole bounce 
PDF of the talk (2M)
Audio+Slides [.mp4 18MB]

by Gaurav Khanna, University of Massachusetts Dartmouth

Loop quantum cosmology (LQC) is an application of loop quantum gravity theory in the context of spacetimes with a high degree of symmetry (e.g. homogeneity, isotropy). One of the main successes of LQC is the resolution of "singularities" that generically appear in the classical theory. An example of this is the "big bang" singularity that causes a complete breakdown of general relativity (GR) in the very early universe. Models studied within the framework of LQC replace this "big bang" with a "big bounce" and do not suffer a singular breakdown like in the classical theory.

It is, therefore, natural to consider applying similar techniques to study black holes; after all, these solutions of GR are also plagued with a central singularity. In addition, it is plausible that a LQC model may shed some light on long-standing issues in black hole physics, i.e., information loss, Hawking evaporation, firewalls, etc.

Now, if one restricts the model only to the Schwarzschild black hole interior region, the spacetime can actually be considered as a homogeneous, anisotropic cosmology (the Kantowski-Sachs spacetime). This allows techniques of LQC to be readily applied to the black hole case. In fact, a good deal of study has been performed in this direction by Ashtekar, Bojowald, Modesto and many others for over a decade. While these models are able to resolve the central black hole singularity and include important improvements over previous versions, they still have a number of issues.

Recently, Singh and Corichi (2016), proposed a new LQC model for the black hole interior that attempts to address these issues. In this talk, Singh describes some of the resulting phenomenology that emerges from that improved model.

The main emphasis of this talk is on the following questions:

(1) Is the "bounce" in the context of a black hole LQC model, i.e., transition from a black hole to a white hole, symmetric? Isotropic and homogeneous models in LQC have generally exhibited symmetric bounces. But, that is not expected to hold in the context of more general models.
(2) Does quantum gravity play a role only once during the bounce process?
(3) What quantitative statements can be made about the time-scales of this process; and what are the full implications of those details?
 (4) Do all black holes, independent of size, exhibit very similar characteristics?

Based on detailed numerical calculations that Singh reviews in his presentation, he uncovers the following features from this model:

(1) The bounce is indeed not symmetric; for example, the sizes of the parent black hole and the offspring white hole are widely different. Other details on this asymmetry appear below.
(2) Two distinct quantum regimes appear in this model, with very different associated time-scales.
(3) In terms of the proper time of an observer, the time spent in the quantum white hole geometry is much larger than in the quantum black hole. And, in particular, the time for the observer to reach the white hole horizon is exceedingly large. This also implies that the formation of the white hole interior geometry happens a lot quicker than the formation of its horizon.
(4) The relation of the bounce time with the black hole mass, does depend on whether the black hole is large or small.

On the potential implications of such details on some of the important open questions in black hole physics, Singh speculates:

(1) For large black holes, the time to develop a white hole (horizon) is much larger than the Hawking evaporation time. This may suggest that for an external observer, a black hole would disappear long before the white hole appears!
(2) For small black holes, the time to form a white hole is smaller than Hawking time, i.e., small black holes explode before they can evaporate!

These could have some interesting implications for the various proposed black hole evaporation paradigms. Given the concreteness of the results Singh presents, they are also likely to be relevant to the many previous phenomenological studies on black hole to white hole transitions including Planck stars.

The two main limitations of Singh's results are: (1) the current model ignores the black hole exterior entirely; and (2) the conclusions rely on effective dynamics, and not the full quantum evolution. These may be addressed in future work.

Tuesday, March 28, 2017

Holographic signatures of resolved cosmological singularities

Tuesday, March 21st
Norbert Bodendorfer, LMU Munich
Title: Holographic signatures of resolved cosmological singularities 
PDF of the talk (2M)
Audio+Slides [.mp4 10MB]
By Jorge Pullin, Louisiana State University

One of the most important results in string theory is the so called “Maldacena conjecture” or “AdS/CFT correspondence” proposed by Juan Maldacena. This conjecture states that given a space-time with cosmological constant (known as anti De Sitter space-time or AdS) the behavior of gravity in it is equivalent to the behavior of a field theory living on the boundary of the space-time. These field theories are of a special type known as “conformal field theories”. Hence the AdS/CFT name. Conformal field theories are considerably better understood than quantum gravity so to make the latter equivalent to them opens several new possibilities. The discussion of AdS/CFT has mostly taken place in the context of string theory which has general relativity as a classical limit. This opens the question of what kind of imprint the singularities that are known to exist in general relativity leave in the conformal field theory.

On the other hand, loop quantum gravity is known for eliminating the singularities that arise in general relativity. They get replaced by regions of high curvature and fluctuations of it that are not well described by a semiclassical geometry. However, nothing is singular, physical variables may take large –but finite-values. If AdS/CFT were to hold in the context of loop quantum gravity the question arises of what imprint would the elimination of the singularity leave on the conformal field theory. The seminar dealt with this point by considering certain functions known as correlation functions in the conformal field theory that characterize its behavior. In particular how the singularities of general relativity get encoded in these correlation functions and how their elimination in loop quantum gravity changes them. The work is at the moment only a model in five dimensions of a particular space-time known as the Kasner space-time.

Future work will consist in expanding the results to other space-times. Of particular interest would be the extension to black hole spacetimes, which loop quantum gravity also rids of singularities. As is well known, black hole space-times have the problem of the “information paradox” stemming from the fact that black holes evaporate through the radiation that Hawking predicted leaving in their wake only thermal radiation no matter what process led to the formation of the black hole. It is expected that when the evaporation is viewed in terms of the conformal field theory, this loss of information about what formed the black hole will be better understood.

In addition to the specific results, the fact that this work suggests points of contact between loop quantum gravity and string theory makes it uniquely exciting since both fields have developed separately over the years and could potentially benefit from cross pollination of ideas.

Wednesday, February 22, 2017

Gravity as the dimensional reduction of a theory of forms in six or seven dimensions

Tuesday, February 21st
Kirill Krasnov, University of Nottingham
Title: 3D/4D gravity as the dimensional reduction of a theory of differential forms in 6D/7D 
PDF of the talk (5M)
Audio+Slides [.mp4 16MB]

by Jorge Pullin, Louisiana State University

Ordinary field theories, like Maxwell’s electromagnetism, are physical systems with infinitely many degrees of freedom. Essentially the values of the fields at all the points of space are the degrees of freedom. There exist a class of field theories that are formulated as ordinary ones in terms of fields that take different values at different points in space,  but that whose equations of motion imply that the number of degrees of freedom are finite. This makes some of them particularly easy to quantize. A good example of this is general relativity in two space and one time dimensions (known as 2+1 dimensions). Unlike general relativity in four-dimensional space-time, it only has a finite number of degrees of freedom that depend on the topology of the space-time considered. This type of behavior tends to be generic for these types of theories and as a consequence they are labeled Topological Field Theories (TFT). These types of theories have encountered application in mathematics to explore geometry and topology issues, like the construction of knot invariants, using quantum field theory techniques. These theories have the property of not requiring any background geometric structure to define them unlike, for instance, Maxwell theory, that requires a given metric of space-time in order to formulate it.

Remarkably, it was shown some time ago by Plebanski, in 1977 and later further studied by Capovilla-Dell-Jacobson and Mason in 1991 that certain four dimensional TFTs, if supplemented by additional constraints among their variables, were equivalent to general relativity. The additional constraints had the counterintuitive effect of adding degrees of freedom to the theory because they modify the fields in terms of which the theory is formulated. Formulating general relativity in this fashion leads to new perspectives on the theory. In particular it suggests certain generalizations of general relativity, which the talk refers to as deformations of GR.

The talk considered a series of field theories in six and seven dimensions. The theories do not require background structures for their definition but unlike the topological theories we mentioned before, they do have infinitely many degrees of freedom. Then the dimensional reduction to four dimensional of these theories was considered. Dimensional reduction is a procedure in which one “takes a lower dimensional slice” of a higher dimensional theory, usually by imposing some symmetry (for instance assuming that the fields do not depend on certain coordinates). One of the first such proposals was considered in 1919 by Kaluza and further considered later by Klein so it is known as Kaluza-Klein theory. They considered general relativity in five dimensions and by assuming the metric does not depend on the fifth coordinate, were able to show that the theory behaved like four-dimensional general relativity coupled to Maxwell’s electromagnetism and a scalar field. In the talk it was shown that the seven dimensional theory considered, when reduced to four dimensions, was equivalent to general relativity coupled to a scalar field. The talk also showed that certain topological theories in four dimensions known as BF theories (because the two variables of the theory are fields named B and F) can be viewed as dimensional reductions from topological theories in seven dimensions and finally that general relativity in 2+1 dimensions can be viewed as a reduction of a six dimensional topological theory.

At the moment is not clear whether these theories can be considered as describing nature, because it is not clear whether the additional scalar field that is predicted is compatible with the known constraints on scalar-tensor theories. However, these theories are useful in illuminating the structures and dynamics of general relativity and connections to other theories.

Tuesday, February 7, 2017

Loop Quantum Gravity, Tensor Network, and Holographic Entanglement Entropy

Tuesday, February 7th
Muxin Han, Florida Atlantic University
Loop Quantum Gravity, Tensor Network, and Holographic Entanglement Entropy 
PDF of the talk (2M)
Audio+Slides [.mp4 18MB]
by Jorge Pullin, Louisiana State University

The cosmological constant is an extra term that was introduced into the equations of General Relativity by Einstein himself. At the time he was trying to show that if one applied the equations to the universe as a whole, they had static solutions. People did not know in those days that the universe expanded. Some say that Einstein called the introduction of this extra term his “biggest blunder” since it prevented him from predicting the expansion of the universe which was observed experimentally by Hubble a few years later. In spite of its origin, the term is allowed in the equations and the space-times that arise when one includes the term are known as de Sitter space-times in honor of the Dutch physicist who first found some of these solutions. Depending on the sign of the cosmological constant chosen, one could have de Sitter or anti-de Sitter (AdS) space-times.

It was observed in the context of string theory that if one considered quantum gravity in anti-de Sitter space-times, the theory was equivalent to a certain class of field theories known as conformal field theories (CFT) living on the boundary of the space-time. The result is not a theorem but a conjecture, known as AdS/CFT or Maldacena conjecture. It has been verified in a variety of examples. It is a remarkable result. Gravity and conformal field theories are very different in many aspects and the fact that they could be mapped to each other opens many possibilities for new insights. For instance, an important open problem in gravity is the evaporation of black holes. Although nothing can escape a black hole classically, Hawking showed that if quantum effects are taken into account, black holes radiate particles like a black body at a given temperature. The particles take away energy and the black hole shrinks, eventually evaporating completely. This raises the question of what happened to matter that went into the black hole. Quantum mechanics has a property named unitarity that states that ordinary matter cannot turn into incoherent radiation, so this raises the question of how it could happen in an evaporating black hole. In the AdS/CFT picture, since the evaporating black hole would be mapped to a conformal field theory that is unitary, that would provide a way to study quantum mechanically how matter turns into incoherent radiation.

Several authors have connected the AdS/CFT conjecture to a mathematical construction known as tensor networks that is commonly used in quantum information theory. Tensor networks have several points in common with the spin networks that are the quantum states of gravity in loop quantum gravity. This talk spells out in detail how to make a correspondence between the states of loop quantum gravity and the tensor networks, basically corresponding to a coarse graining or averaging at certain scales of the states of quantum gravity. This opens the possibility of connecting results from AdS/CFT with results in loop quantum gravity. In particular the so-called Ryu-Takahashi formula for the entropy of a region can be arrived from in the context of loop quantum gravity.

Wednesday, January 25, 2017

Symmetries and representations in Group Field Theory

Tuesday, January 24th
Alexander Kegeles, Albert Einstein Institute
Title: Field theoretical aspects of GFT: symmetries and representations 
PDF of the talk (1M)
Audio+Slides [.mp4 11MB]

by Jorge Pullin, Louisiana State University

In loop quantum gravity the quantum states are labeled by loops, more precisely by graphs formed by lines that intersect at vertices and that are “colored”, meaning each line is associated with an integer. They are known as "spin networks". As the states evolve in time these graphs "sweep" surfaces in four dimensional space-time constituting what is known as a “spin foam”. This is a representation of a quantum space-time in loop quantum gravity. The spin foams connect an initial spin network with a final one and the formalism gives a probability for such “transition” from a given spatial geometry to a future spatial geometry to occur. The picture that emerges has some parallel with ordinary particle physics in which particles transition from initial to final states, but also some differences.

However, it was found that one could construct ordinary quantum field theories such that the transition probabilities of them coincided with those stemming from spin foams connecting initial to final spatial geometries in loop quantum gravity. This talk concerns itself with such quantum field theories, known generically as Group Field Theories (GFTs). The talk covered two main aspects of them: symmetries and representations.

Symmetries are important in that they may provide mathematical tools to solve the equations of the theory and identify conserved quantities in it. There is a lot of experience with symmetries in local field theories, but GFT’s are non-local, which adds challenges. Ordinary quantum field theories are formulated starting by a quantity known as the action, which is an integral on a domain. A symmetry is defined as a map of the points of such domain and of the fields that leaves the integral invariant. In GFTs the action is a sum of integrals on different domains. A symmetry is defined as a collections of maps acting on the domains and fields that leave invariant each integral in the sum. An important theorem of great generality stretching from classical mechanics to quantum field theory is Noether’s theorem, that connects symmetries with conserved quantities. The above notion of symmetry for GFTs allows to introduce a Noether’s theorem for them. The theorem could find applicability in a variety of situations, in particular certain relations that were noted between GFTs and recoupling theory and better understand various models based on GFTs.

In a quantum theory like GFTs the quantum states structure themselves into a mathematical set known as Hilbert space. The observable quantities of the theory are represented as operators acting on such space. Hilbert spaces are generically infinite dimensional and this introduces a series of technicalities both in their own definition and in the definition of observables for quantum theories. In particular one can find different families of inequivalent operators related to the same physical observables. This is what is known as different representations of the algebra of observables. Algebra in this context means that one can compose observables to form either new observables or linear combinations of known observables. An important type of representation in quantum field theory is known as Fock representation. It is the representation on which ordinary particles are based. Another type of representations is the condensate representation which, instead of particles, describes their collective (excitations) behaviour and is very convenient for systems with large (infinite) number of particles. A discussion of Fock and condensate like representations in the context of GFTs was presented and the issue of when representations are equivalent or not was also addressed.

Future work looks at generalizing the notion of symmetries presented to find further non-standard symmetries of GFTs. Also investigating “anomalies”. This is when one has a symmetry in the classical theory that may not survive upon quantization. The notion of symmetry can also be used to define an idea of “ground state” or fundamental state of the theory. In ordinary quantum field theory in flat space-time this is done by seeking the state with lower energy. In the context of GFTs one will invoke more complicated notions of symmetries to define the ground state. Several other results of ordinary field theories, like the spin statistics theorem, may be generalizable to the GFT context using the ideas presented in this talk.

Friday, March 11, 2016

Symmetry reductions in loop quantum gravity

Tuesday, Dec. 8th
Norbert Bodendorfer, Univ. Warsaw 
Title: Quantum symmetry reductions based on classical gauge fixings 
PDF of the talk (1.4MB)
Audio [.wav 35MB]

Tuesday, Nov. 10th
Jedrzej Swiezewski, Univ. Warsaw 
Title: Developments on the radial gauge 
PDF of the talk (4MB)
Audio [.mp3 40MB]

by Steffen Gielen, Imperial College

A few months ago, physicists around the world celebrated the centenary of the field equations of general relativity, presented by Einstein to the Prussian Academy of Sciences in November 1915. Arriving at the correct equations was the culmination of an incredible intellectual effort by Einstein, driven largely by mathematical requirements that the new theory of gravitation (superseding Newton's theory of gravitation, which proved ultimately incomplete) should satisfy. In particular, Einstein realized that its field equations should be generally covariant – they should take the same general form in any coordinate system that one chooses to use for the calculation, say whether one uses Cartesian, cylindrical, or spherical coordinates. This property sets the equations of general relativity apart from Newton's laws of motion, where changing coordinate system can lead to the appearance of additional “forces” such as centripetal or Coriolis forces.

Many conferences were held honoring the anniversary of Einstein's achievement. What was discussed at those conferences was partially the historical context, the beauty of the form of the equations, or the precise mathematical and conceptual significance of general covariance. However, the most important legacy of general relativity and the main inspiration for modern research have been the new physical phenomena that appear in general relativity but not in Newtonian gravity: black holes are regions of spacetime where gravity becomes so strong that not even light can escape; the strong gravitational field outside a black hole leads to a time dilation so strong that an hour nearby a black hole can correspond to years on Earth, as used recently in the film Interstellar; and we now believe that the universe as a whole is expanding, and has been since the Big Bang which is thought of as the beginning of space and time.

In order to understand these dramatic consequences of the Einstein equations, physicists had to find solutions to these equations. This is rather challenging in general: the Einstein equations are complicated differential equations for ten functions, depending on one time and three space dimensions, that encode the gravitational field of spacetime. Furthermore, the conceptually appealing property of general covariance means that apparently different solutions of the equations can be simply the same physical configuration looked at in different coordinates. Indeed, both issues – finding solutions to the equations at all and understanding their meaning – were challenges in the early days of the theory, when physicists tried to make sense of Einstein's equations.

Despite this formidable challenge, the Prussian lieutenant of the artillery Karl Schwarzschild, while serving on the Eastern front in World War I, was able to derive an exact solution of Einstein's equations in vacuum within weeks of their publication, much to the surprise of Einstein himself. This solution, now called the Schwarzschild solution, describes a black hole, and is one of the most important solutions of general relativity. What Schwarzschild did in order to solve the equations was to assume a symmetry of the solution: he assumed that the configuration of the gravitational field should be spherically symmetric. In spherical coordinates, where each point in space is specified by one radial and two angular coordinates, it should be independent of any change in the angular directions. This means that one describes space as a collection of regular, concentric spheres. What Schwarzschild found was that the spheres did not have to be glued together to simply give normal flat space, but one could form a curved geometry out of them, with curvature increasing as one heads towards the centre (eventually forming a black hole), while still solving Einstein's equations. To be able to do the calculation, Schwarzschild had to choose a particularly suitable coordinate system, hence exploiting the property of general covariance in his favor.

This strategy of finding solutions is typical for practitioners of general relativity: cosmological solutions could similarly be found by assuming that the universe looks exactly the same at each point and in each direction in space (in mathematical terms, it is homogeneous and isotropic), and only changes in time. This reduces the problem of solving Einstein equations to a much simpler task, and explicit solutions could be written down, again in a suitable coordinate system. These simplest solutions already exhibit the main features of our universe (overall expansion and an initial Big Bang singularity) and are fairly realistic – indeed our Universe seems to display only small variations between different large-scale regions, and at the very largest scales is, within an approximation, well described by a geometry that simply looks the same everywhere in space.

Loop quantum gravity is an approach at a quantization of general relativity, aiming to extend general relativity by making it compatible with quantum mechanics. What distinguishes it from other approaches is that the main property of general relativity, general covariance, is taken as a central guiding principle towards the construction of a quantum theory. In some respects, the status of loop quantum gravity can be compared to the early days of general relativity: while it is now known that a quantum theory compatible with general covariance can be constructed, and its mathematical structure is well understood, one now needs to understand the new physical phenomena implied by the quantization, beyond general relativity. Just as in the time after November 1915, today's physicists should find explicit solutions to the equations of loop quantum gravity that can be used to study the physical implications of the (relatively) new framework.

One of the main successes of loop quantum gravity has been its application to cosmology. Homogeneous solutions of the Einstein equations that approximately describe our universe have been shown to receive modifications once loop quantum gravity techniques are used, leading to a resolution of the Big Bang singularity by a Big Bounce, and potentially observable quantum effects. However, the resulting models of the universe are not solutions of the full theory of loop quantum gravity: rather, they arise from quantization of a reduced set of solutions of classical general relativity with loop quantum gravity techniques. There is no reason, in general, to expect that these are exact solutions of loop quantum gravity. Quantum mechanics is funny: quantization can lead to many inequivalent theories, depending on how one decides to do it. By assuming that the universe is homogeneous from the outset, one obtains a quantum theory of only a finite, rather than an infinite number of “degrees of freedom”. It is well known that quantum theories can behave differently depending on whether they have a finite or infinite number of degrees of freedom.

In their ILQGS seminars, Jedrzej and Norbert presented work towards resolving this tension. Namely, they presented an approach in which, similar to how Schwarzschild and contemporaries proceeded 100 years ago, one identifies a suitable coordinate system in which the spacetime metric, representing the gravitational field, is represented. In a quantum theory where general covariance is implemented fundamentally, this means one has to perform a “gauge-fixing”; the freedom of changing the coordinate system must be “fixed” consistently in the quantum theory. Gauge-fixings mean that one works with fewer variables, and has to worry less about different but physically equivalent solutions that are only related by changes in the coordinate system. Achieving them is often quite hard technically. Together with collaborators in Warsaw, Jedrzej and Norbert have made progress on this issue in recent years.

The second step, after a convenient coordinate system (think of spherical coordinates for treating the Schwarzschild black hole) has been chosen, is to do a “symmetry reduction” in the full quantum theory: rather than on the most general quantum universes, one now focusses on those that have a certain symmetry property. Norbert showed a detailed strategy for how to do this. One identifies an equation satisfied by all classical solutions with the desired symmetry, such as isotropy (i.e. looking the same in all directions). The quantum version of this equation is then imposed in loop quantum gravity, leading to a full quantum definition of symmetries like “isotropy” or “spherical symmetry” in loop quantum gravity. The obvious applications of the mechanism, which are being explored at the moment, are identifying cosmological and black hole solutions in loop quantum gravity, studying their dynamics, and verifying whether the resulting effects are in accord with what has been found in the simpler finite-dimensional quantum models described above. In particular, one would like to know whether singularities inside black holes and at the Big Bang, where Einstein's theory simply breaks down, can be resolved by quantum mechanics, as is hoped.

Jedrzej also showed how the methods developed in different “gauge-fixings” for classical general relativity could be used to resolve a disputed issue in the context of the AdS/CFT correspondence in string theory, where one faces a similar problem of fixing the huge freedom under changes in the coordinate system in order to identify the invariant physical properties of spacetime. In particular, a certain choice of gauge-fixing has been discussed in AdS/CFT, which leads to unfamiliar consequences such as non-locality in the gauge-fixed version of the theory. The tools developed by Jedrzej and collaborators could be used to clarify precisely how this non-locality occurs. They hence provide a somewhat unusual example of the application of methods developed for loop quantum gravity in a string theory-motivated context, clearly a positive example that can inspire more work on closer connections between methods used in these different communities.