Tuesday, October 27th
Marc Geiller, ENS LyonQuantum gravity at the corner
PDFof the talk (1M)
Audio+Slidesof the talk (370M)
SRT (Subtitles)of the talk (150K)
By Jorge Pullin, LSU
Many physical theories are described in terms of more variables than needed. That includes field theories like general relativity. For an analogy consider a pendulum. We can describe it by giving the x,y coordinates of the bob, even though everything is completely characterized if one just gives the angle of the pendulum wire with respect to the vertical. When one has extra variables there may exist many sets of values of them that correspond to the same physical situation. In the pendulum x=1,y=1 and x=2,y=2 both correspond to the wire at 45 degrees. So it is said that these theories have symmetries in the sense that many mathematical configurations correspond to the same physical situation. These are mathematical, not physical symmetries. However, if one considers bounded regions of space-time those mathematical symmetries translate into physical symmetries and into conserved quantities. For instance the electric charge. To define electric charge one needs to define a region it is contained in.
More recently the concept has appeared in physics that one can describe what is happening in a region of space-time by describing what is happening at its boundary. An example of this is the so called AdS/CFT or Maldacena conjecture in string theory. This applies to a specific type of space-times called anti de Sitter (AdS) and it says that the description of gravity in the space-time is equivalent to a special type of field theory called conformal field theory (CFT) that lives on the boundary of the space-time. This property of encoding the information of a space-time in its boundary is known as "holography" by analogy with the optical phenomenon where three dimensional images are captured on a two dimensional photograph.
This talk addressed studying bounded regions of space-time, more precisely bounded regions of a spatial slice of a space-time, where the boundary is two dimensional and is called "corner" in math. It was explored what is the most general set of symmetries that one can formulate and their implications in the corners. It was observed that certain properties of loop quantum gravity, like the quantization of the areas, arise naturally in this context. This way of viewing things opens a new approach to loop quantum gravity that may offer connections with the ideas of holography in string theory.
I benefited from discussions with Ivan Agulló while preparing this text.
No comments:
Post a Comment